
EE 434
Lecture 15

Devices in Semiconductor Processes   



Quiz 10
The resistors in this strain-gauge bridge circuit  have a temperature 

coefficient that is +200ppm/oC and  measured unstrained resistance value 
at T=300oK of 100Ω.  Assume that  the temperature of R4 was 30oC
higher than that of the remaining resistors which are all operating at 
300oK.  If the signal information is carried in the change in R2 which is 
0.01Ω. What percent error in VOUT is introduced by the temperature 
variation of R4?  
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Basic Devices and Device Models

• Resistor
• Diode
• Capacitor
• MOSFET
• BJT

Review from Last Time



pn Junctions
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Diode Equation:

JS= Sat Current Density
A= Junction Cross Section Area
VT=kT/q
n is approximately 1

N P

Review from Last Time



Capacitors

• Types
– Parallel Plate
– Fringe
– Junction

Review from Last Time



Parallel Plate Capacitors
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insulator

A = area of intersection of A1 & A2

One (top) plate intentionally sized smaller to determine C

Review from Last Time
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Fringe Capacitors

C

Review from Last Time



Capacitance
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Note: d is voltage dependent
-capacitance is voltage dependent
-usually parasitic caps
-varicaps or varactor diodes exploit
voltage dep. of C

d
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Cj0: junction capacitance at VD = 0V

ϕB: barrier or built-in potential

Review from Last Time



Basic Devices and Device Models

• Resistor
• Diode
• Capacitor
• MOSFET
• BJT



Operation and Modeling of MOSFET
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Goal:  Obtain a mathematical relationship between the 
port variables  of a device.
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Modeling of the MOSFET

Develop multiple models that are useful 
for specific classes of applications

Use as simple of  a model as we can 
justify

Often must consider a modestly more 
complicated model to justify a simpler 
model

Strategy



Modeling of the MOSFET
Goal:  Obtain a mathematical relationship between the 
port variables  of a device.

Simple dc Model

Small 
Signal 

Frequency 
Dependent Small 

Signal 

Better Analytical  
dc Model

Sophisticated Model 
for Computer 
Simulations 

Simpler dc Model
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Modeling of the MOSFET
Goal:  Obtain a mathematical relationship between the 
port variables  of a device. ( )
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n-Channel MOSFET

Poly
n-active

Gate oxide
p-sub



n-Channel MOSFET

LEFF
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DrainGate

Bulk



n-Channel MOSFET 

Poly
n-active

Gate oxide

p-sub
depletion region (electrically induced)



n-Channel MOSFET Operation and Model

VBS

VGS

VDS

Apply small VGS
(VDS and VBS assumed to be small) ID=0

IG=0
IB=0

Depletion region at drain and source block current

ID
IG

IB

Termed “cutoff” region of operation



n-Channel MOSFET Operation and Model

VBS

VGS

VDS

Apply small VGS but a little larger than before
(VDS and VBS assumed to be small) ID=0

IG=0
IB=0

Depletion region electrically induced in channel

ID
IG

IB

Termed “cutoff” region of operation



n-Channel MOSFET Operation and Model

VBS

VGS

VDS

Increase VGS
(VDS and VBS assumed to be small) ID=0

IG=0
IB=0

Depletion region in channel becomes larger

ID
IG

IB



n-Channel MOSFET Operation and Model

VBS

VGS

VDS

Increase VGS more
IDRCH=VDS
IG=0
IB=0

Inversion layer forms in channel

ID
IG

IB

(VDS and VBS small)

Inversion layer will support current flow from D to S
Channel behaves as thin-film resistor

Critical value of 
VGS that creates 
inversion layer 
termed  threshold 
voltage, VT)



n-Channel MOSFET Operation and Model

VBS

VGS

VDS

Increase VGS more
IDRCH=VDS
IG=0
IB=0

Inversion layer  in channel thickens

ID
IG

IB

(VDS and VBS small)

RCH will decrease
Termed “ohmic” or “triode” region of operation



Triode Region of Operation
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n-Channel MOSFET Operation and Model

VBS

VGS

VDS

Increase VDS
ID=?
IG=0
IB=0

Inversion layer thins near drain

ID
IG

IB

(VBS small)

ID no longer linearly dependent upon VDS

Still termed “ohmic” or “triode” region of operation



Triode Region of Operation
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n-Channel MOSFET Operation and Model

VBS

VGS

VDS

Increase VDS even more
ID=?
IG=0
IB=0

Inversion layer disappears near drain

ID
IG

IB

(VBS small)

Termed “saturation”region of operation
Saturation first occurs when VDS=VGS-VT



Saturation Region of 
Operation
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n-Channel MOSFET Operation and Model

VBS

VGS

VDS

Increase VDS even more (beyond VGS-VT)
ID=?
IG=0
IB=0

Nothing much changes !!

ID
IG

IB

(VBS small)

Termed “saturation”region of operation



Saturation Region of 
Operation
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Model Summary
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Note:  This is the third model we have introduced for the MOSFET



Modeling of the MOSFET
Goal:  Obtain a mathematical relationship between the 
port variables  of a device. ( )
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Modeling of the MOSFET
Goal:  Obtain a mathematical relationship between the 
port variables  of a device. ( )
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End of Lecture 15




